Instrumental Methods of Analysis (Pharmaceutical Analysis-II)
  by Madhuri Baghel / Kalyani Sakure / Hemant Badwaik
About The Book
Related Books
Order Now by Email

   ISBN 978-93-85529-??-?; 1st Ed. 2020; pp.viii+???

   Delhi price: ---      Outside Delhi price: ---      Overseas price : ---

 About The Book  

   The book has been prepared as per the syllabus of Instrumental Methods of Analysis, recommended by the Pharmacy Council of India for 7th semester, Bachelor in Pharmacy course. The seventeen chapters which cover entire syllabus for the subject. Each chapter is illustrated by photographs, numerous diagrams and schemes of chemical reactions or technical principles. At the end of each chapter a set of questions including multiple choice questions (MCQs) have been provided for practice and to build up the confidence. Sufficient care has been taken during preparation of the content in terms of language, so that the students can easily understand.

   Chemical analysis focuses on three principal areas: qualitative study, quantitative determinations, in particular by 'traditional' techniques such as titrimetry and gravimetry, and structural analysis using procedures which require time consuming and laborious calculations. Today's analytical chemist is armed with instrumental techniques, automated systems and computers for speed and precision of analytical measurements.

   Spectroscopic Methods (Spectroscopy) and Separation Methods (Chromatography) each of which is the object of an investigative study of the fundamental ideas, their extension, development and application to the corresponding principal, instrumental techniques.


1.1 Introduction
     1.1.1 Wave Property
     1.1.2 Wave Parameters and Units
     1.1.3. Particle Property
1.2 Electromagnetic Spectrum
1.3 Types of Spectroscopy

2.1 Principle
2.2 Types of Electronic Transitions
2.3 The Chromophore
2.4 The Auxochrome
2.5 Absorption and Intensity Shifts (Spectral shifts) in the UV-Visible Spectroscopy
2.6 Absorption
     2.6.1 Laws regarding absorption of light (Beer’s-Lambert’s Law)
     2.6.2 Deviations from Beer’s law
     2.6.3 Effect of solvent on absorption spectra
2.7 Instrumentation
     2.7.1 Source of electromagnetic radiation
 Visible radiation
 Ultravoilet radiation
     2.7.2 Filters and monochromators Filters
     2.7.3 Sample cells (cuvettes)
     2.7.4 Detectors
 Barrier layer cell or photo voltaic cell
 Photo tubes or photoemissive cells
 Photo Multiplier Tubes (PMT)
 The photodiode array detector
2.8 Different Types of Instruments
2.9 Applications in Pharmacy
     2.9.1 Determination of pKa value
     2.9.2 Pharmaceutical quantitative analysis
 Single component analysis
               (a) Using standard absorptivity value (A_1cm^(1%) or ε)
               (b) Using a single point and double point standardization method
               (c) Using Calibration curve method or multiple standard methods
 Multicomponent Analysis
               (a) Simultaneous equation method
               (b) Absorbance ratio method (Q value)
               (c) Derivative spectrophotometric method
               (d) Difference spectrophotometric method
     2.9.3 Spectrophotometric titrations
     2.9.4 Preformulation & formulation study
     2.9.5 Structural analysis
2.10 Numerical

3.1 Introduction
     3.1.1 Electronic states
     3.1.2 Deactivation process
     3.2 Theory of Fluorescence
3.3 Types of Fluorescence
3.4 Quantitative Aspects of Fluorimetry
3.5 Factors influencing fluorescence intensity
     3.5.1 Concentration
     3.5.2 Quantum efficiency (Φ)
     3.5.3 Intensity of incident light (I0)
     3.5.4 Pathlength (b)
     3.5.5 Conjugation
     3.5.6 Nature of substituent groups
     3.5.7 Rigidity of structures
     3. 5.8 Adsorption
     3.5.9 Viscosity
     3.5.10 Effect of temperature
     3.5.11 Oxygen
     3.5.12 pH
     3.5.13 Photochemical decomposition
3.6 Quenching
3.7 Instrumentation
     3.7.1 Source of light
     3.7.2 Filters and monochromators
     3.7.3 Sample cells
     3.7.4 Detectors (Transducer)
3.8 Different Types of Instruments
     3.8.1 Single beam filter fluorometer
     3.8.2 Double beam filter fluorometer
     3.8.3 Single beam spectrofluorometers
     3.8.4 Double beam spectrofluorometers
3.9 Advantages and Limitations of Flourimetry
3.10 Applications
     3.10.1 Determination of inorganic substances
     3.10.2 Determination of organic substances
     3.10.3 Pharmaceutical applications
     3.10.4 Miscellaneous applications

4.1 Introduction
4.2 Theory
     4.2.1 Types of molecular vibrations
     4.2.2 Vibrational frequency
 Fundamental modes of vibrations in polyatomic molecules
 Factors influencing vibrational frequencies
4.3 Instrumentation
     4.3.1 IR Radiation Source
     4.3.2 Sample handling technique
 A sampling of gases
 A sampling of liquids
 A sampling of solids
     4.3.3 Monochromators
     4.3.4 Detectors (transducer)
 Thermal detectors
 Pyroelectric detector
 Golay pneumatic detector
 Photon detectors (photo conducting detectors)
4.4 Different types of instruments
     4.4.1 Dispersive spectrophotometer
     4.4.2 Fourier transform spectrometers (FTIR)
 Single beam FTIR spectrometer
 Double beam FTIR spectrometer
     4.4.3 Non-dispersive instruments
 Filter photometers
 Photometer without filer
4.5 Application of IR spectroscopy
     4.5.1 Identification of substance
     4.5.2 Determination of the molecular structure
     4.5.3 Studying the progress of reactions
     4.5.4 Detection of impurities
     4.5.5 Isomerism in organic compounds
     4.5.6 Formation of chelates
     4.5.7 Analysis of pharmaceutical dosage forms
     4.5.8 Miscellaneous

5.1 Introduction
5.2 Principle
5.3 Instrumentation
5.3.1 Nebulizer
     5.3.2 Burner/Atomizer
 Total consumption burner
 Laminar flow (premix) burner
     5.3.3 Filter / monochromator
     5.3.4 Detector
     5.3.5 Recorder/ readout meters
5.4 Different types of instruments
     5.4.1 Flame photometer
     5.4.2 Flame spectrophotometer
5.5 Interferences
     5.5.1 Background absorption
     5.5.2 Spectral line interference / cationic interference
     5.5.3 Anionic interference/vaporization interference
     5.5.4 Ionization interference
     5.5.5 Physical interference / viscosity
5.6 Application
     5.6.1 Quantitative analysis
 Direct comparison method
 Calibration curve method
 Standard addition method
 Internal standard method
     5.6.2 Assay of pharmaceutical substances (cognate assays)

6.1 Introduction
6.2 Principle
6.3 Instrumentation
     6.3.1 Light source
 Hollow Cathode Lamp (HCL)
 Electrodeless Discharge Lamps (EDL)
     6.3.2 Thermal devices for obtaining atomic aerosols
 Flame atomization: burner and nebulizer
 Thermoelectric atomization
 Chemical vaporization
     6.3.3 Monochromator
     6.3.4 Detector
     6.3.5 Readout device
6.4 Different types of AAS Spectrophotometers
     6.4.1 Single-beam atomic absorption spectrophotometer
     6.4.2 Double-beam atomic absorption spectrophotometer
6.5 Interferences
     6.5.1 Physical interferences
     6.5.2 Anionic interferences
     6.5.3 Background absorption
     6.5.4 Scattering effects
     6.5.5 Ionic interferences
6.6 Advantages of AAS over FES
6.7 Disadvantages of AAS
6.8 Applications of AAS

7.1 Introduction
7.2 Principle
7.3 Instrumentation
     7.3.1 Source of light
     7.3.2 Filters and monochromators
     7.3.3 Sample cells
     7.3.4 Detectors
7.4 Different types of Instruments
     7.4.1 Nephelometer
     7.4.2 Nephloturbidimeter
7.5 Applications
     7.5.1 Analysis of water
     7.5.2 Determination of carbon dioxide
     7.5.3 Determination of inorganic substances
     7.5.4 Cognate Assays
     7.5.5. Turbidimetric titrations

8.1 Introduction
8.2 Classification of Chromatographic Methods
     8.2.1 Based on modes of separation
     8.2.2 Based on Principle or mechanism of separation
     8.2.3 Based on type of analysis
     8.2.4 Based on geometry of stationary phase
     8.2.5 Based on development of the chromatogram
8.3 Theory of Chromatography
     8.3.1 Plate theory
     8.3.2 Rate theory
8.4 Principles underlying chromatographic separations

9.1 Introduction
     9.1.1 Adsorption column chromatography
     9.1.2 Partition column chromatography
9.2 Methodology
     9.2.1 Apparatus
     9.2.2 Stationary phase or adsorbents
     9.2.3 Solvents or mobile phase or eluting agent
     9.2.4 Column preparation
     9.2.5 Sample loading
     9.2.6 Elution or development technique
     9.2.7 Detection
     9.2.8 Components recovery
9.3 Factors Affecting Column Efficiency
9.4 Advantages
9.5 Disadvantages
9.6 Applications
     9.6.1 Adsorption column chromatography
     9.6.2 Partition column chromatography

10.1 Introduction
10.2 Principle
10.3 Methodology
     10.3.1 Thin layer plates
     10.3.2 Choice of coating material or adsorbent
     10.3.3 Preparation of thin layer on plate
     10.3.4 Activation of adsorbent
     10.3.5 Purification of silica gel G layer
     10.3.6 Sample application
     10.3.7 Developing tank
     10.3.8 Choice of mobile phase or solvent system
     10.3.9 Development technique
          (a) Ascending technique
          (b) Descending technique
          (c) Horizontal and circular development
          (d) Multiple or repeated development
     10.3.10 Detecting methods
          (a) Non specific methods
               1. Iodine chamber
               2. Charring or sulfuric acid spray reagent
          (b) Specific methods
     10.3.11 Evaluation of chromatograms
          (a) Qualitative evaluation
          (b) Quantitative evaluation
               1. Direct methods
               2. Indirect methods
10.4 Advantages of TLC
10.5 Disadvantages of TLC
10.6 Applications
     10.6.1 Test the purity of the sample or drug
     10.6.2 For identification and characterization of various drugs
     10.6.3 Isolation and separation
     10.6.4. In organic chemistry
     10.6.5 Biochemical analysis
     10.6.6 In food industry
     10.6.7 Natural product analysis
     10.6.8 Application of TLC in quantitative analysis
10.7 Preparative TLC
10.8 HPTLC
11.1 Introduction
     11.1.1 Types of paper chromatography
11.2 Principle
11.3 Methodology
     11.3.1 Choice of proper chromatographic technique
     11.3.2 Choice of chromatographic paper
     11.3.3 Choice of mobile phase
     11.3.4 Sample preparation and Spotting
     11.3.5 Drying of chromatogram
     11.3.6 Visualization
          (a) Non-specific methods
               1. UV chamber for fluorescent compounds
               2. Iodine chamber method
          (b) Specific methods
11.3.7 Evaluation of chromatogram
          (a) Qualitative evaluation
          (b) Quantitative evaluation
11.3.8 Development techniques
          (a) Ascending chromatography
          (b) Descending chromatography
          (c) Ascending-descending chromatography
          (d) Radial paper chromatography
          (e) Two dimensional Chromatography
11.4. Advantages of paper chromatography
11.5 Disadvantages of paper chromatography
11.6 Precautions to be taken care while performing paper chromatography
11.7 Applications of paper chromatography
     11.7.1 Separation of amino acid
     11.7.2 Separation of mixture of sugars
     11.7.3 Identification of drugs
     11.7.4 Identification of impurities
     11.7.5 Identification of related compounds
     11.5.6 For identification decomposition products
     11.5.7 For analysis of metabolites of drugs in blood, urine

12.1 Introduction
12.2 Factors Affecting Electrophoretic Mobility
     12.2.1 Sample/Solute property
          (a) Charge
          (b) Size
          (c) Shape
     12.2.2 The environment or the laboratory system
          (a) Electric field
          (b) Buffer
          (c) Supporting medium
12.3 Techniques of Electrophoresis
     12.3.1 Moving boundary or free boundary electrophoresis
     12.3.2 Zone electrophoresis/electrochromatography
12.4 Paper Electrophoresis
     12.4.1 Components of paper electrophoresis
          (a) Paper
          (b) Electrolytes or buffer
          (c) Electrodes
          (d) Source of current
     12.4.2 Types of paper electrophoresis
          (a) High Voltage paper electrophoresis
          (b) Low Voltage paper electrophoresis
     12.4.3 Methodology
     12.4.4 Advantages of paper electrophoresis
     12.4.5 Disadvantages of paper electrophoresis
     12.4.6 Applications of paper electrophoresis
12.5 Gel Electrophoresis
     12.5.1 Methodology
          (a) Types of Gels
          (b) Preparation of Gels
 Sample application and visualization
     12.5.2 Types of gel electrophoresis
     12.5.3 Advantages of gel electrophoresis
     12.5.4 Disadvantages of gel electrophoresis
     12.5.5 Applications of gel electrophoresis
12.6 Capillary Electrophoresis
     12.6.1 Techniques of Capillary Electrophoresis
          (a) Capillary Zone Electrophoresis (CZE)
          (b) Capillary Gel Electrophoresis (CGE)
          (c) Capillary Isotachophoresis (CIE)
          (d) Electrokinetic Capillary Chromatography (MECC)
     12.6.2 Methodology
     12.6.3 Variations in capillary electrophoresis
     12.6.4 Advantages of capillary electrophoresis
     12.6.5 Disadvantages of capillary electrophoresis
     12.6.6 Applications of capillary electrophoresis

13.1 Introduction
13.2 Theory
13.3 Instrumentation
     13.3.1 Carrier gas
     13.3.2 Flow regulator or flow meter
     13.3.3 Injection Devices
     13.3.4 Columns
          (a) According to nature
               1. Packed column
               2. Capillary column / open tubular column / golay column
          (b) According to use
               1. Analytical column
               2. Preparative column
     13.3.5 Temperature control device (temperature programming)
     13.3.6 Detectors
          (a) Flame Ionization Detector (FID)
          (b) Thermal Conductivity Detector (TCD)
          (c) Electron Capture Detector (ECD)
          (d) Thermionic Detector (TID)
          (e) Electrolytic Conductivity Detector
          (f) Photoionization Detector (PID)
          (g) Flame photometric detector (FPD)
          (h) Mass spectrometer (MS) Detector
     13.3.7 Recorder and integrator
13.4 Derivatization
     13.4.1 Ideal Characteristic of derivatization
     13.4.2 Limitations
     13.4.3 Types of Derivatization
          (a) Alkylation
          (b) Silylation
          (c) Acylation
          (d) Chiral derivatization
13.5 Applications
     (a) Qualitative analysis
          1. Checking the purity of compound
          2. Presence of impurities
     (b) Quantitative analysis
          1. Direct comparison method
          2. Calibration curve method
          3. Internal standard method
     (c) Multicomponent analysis
     (d) Food Product analysis
     (e) Inorganic compounds
     (f) Environmental studies
     (g) Forensic science

14.1 Introduction
14.2 Principle
14.3 Theory
14.4 Chromatographic Parameters
14.5 Instrumentation
     14.5.1 Solvent reservoir and mixing system
     14.5.2 High pressure pump
          (a) Types of HPLC pumps
               1. Reciprocating pumps
               2. Displacement or syringe pumm
               3. Pneumatic or constant pressure pump
     14.5.3 Sample inlet or injection system
          (a) Septum Injector
          (b) Loop valve type or rheodyne injectors
          (c) Stopped-flow injection
     14.5.4 Columns
          (a) Analytical columns
               1. Standard column
               2. Radial compression columns
               3. Narrow bore columns
               4. Fast, Short Columns
          (b) Guard columns
          (c) Column Packing
            (i) The materials used for column packing
               1. Totally porous
               2. Pellicular or superficially porous
               3. Bonded Phases
            (ii) HPLC stationary phases
               1. Octadecyl silica (ODS or C18)
               2. Size exclusion and ion-exchange stationary phases
               3. Chiral stationary phases
          (d) Temperature Control
     14.5.5 Detector and recording unit
               1. Refractive index detectors (RI detectors)
               2. Conductivity detectors
               3. UV-visible spectrophotometric detectors
               4. Infrared absorption detectors
               5. Fluorescence detectors
               6. Electrochemical detectors
               7. Evaporative Light Scattering Detectors (ELSD)
               8. Mass Detectors
          (a) Particle Beam Ionization
          (b) Thermospray Interface
          (c) Electrospray Ionization
          (d) Atmospheric pressure chemical Ionization (APCI)
14.6 Advantages of HPLC
14.7 Applications of HPLC
     (a) For Clinical diagnosis of diseases and disorders
     (b) In scientific research for discovery
     (c) In pharmaceutical labs for analysis
     (d) In the food industry for quality control
     (e) For standards control by government
     (f) Testing for Pesticides Residue
     (g) Forensic application

15.1 Introduction
15.2 Principle
15.3 Classification of ion exchange resins
     15.3.1 According to Chemical nature
     15.3.2 According to source
     15.3.3 According to structure
15.4 Properties of ion exchange resins
     (a) Physical Properties
          1. Particle size and porosity
          2. Cross linking and swelling
          3. Regeneration
     (b) Chemical Properties
15.5 Mechanism of ion exchange process
15.6 Methodology of ion exchange chromatography
     15.6.1 Column material and dimensions
     15.6.2 Type of ion exchange resin and physical characteristics
     15.6.3 Mobile phase
     15.6.4 Packaging of column
     15.6.5 Application of sample
     15.6.6 Elution
     15.6.7 Analysis of elutent
15.7 Factors affecting ion exchange separation
     (a) Nature and properties of ion exchange resin
     (b) Nature of exchanging ions
15.8 Applications
     1. Demineralization of water
     2. Softening of water
     3. Separation of sugars
     4. Purification of organic compounds
     5. Separation of amino acids
     6. Purification and recovery of pharmaceuticals
     7. Biochemical separation
     8. Medicinal importance
     9. Ion exchange column in HPLC

16.1 Introduction
16.2 Theory
16.3 Instrumentation
     16.3.1 Column
     16.3.2 Stationary phase
     16.3.3 Mobile phase
     16.3.4 Elution
     16.3.5 Detector
16.4 Factors affecting ressolution in gel chromatography
16.5 Steps of gel chromatography
16.6 Advantages of gel chromatography
16.7 Applications
     1. Analysis of synthetic polymers or bio-polymers
     2. Separation of proteins in mixture
     3. Molecular weight determination
     4. Molecular weight distribution analysis
     5. Purification of macromolecules, proteins, enzymes, amino acids,
     6. Desalting of proteins

17.1 Introduction
17.2 Theory
17.3 Instrumentation
     17.3.1 Steps of affinity chromatography
          1. Application of sample
          2. Washing
          3. Elution
          4. Regenration
     17.3.2 Stationary phase for affinity chromatography
          (a) Affinity supports (matrix)
          (b) Spacer arm
          (c) Affinity ligand
               1. Mono specific ligands
               2. Group specific ligands
17.4 Applications


I     Woodward-Fisher Rules